Symbols & Functions: Level 3

1. Let \(f(x) = x^2 – 5\). What is the value of \(f(f(f(1)))\)?
2. Let \( \nabla x = 3x – 3 \). If \( \nabla(\nabla k) = 15 \), what is the value of \(k\)?
3. Let \(x\#y = ax + by\). If \(1\#2 = 7\) and \(2\#1 = 8\), what is the value of \(5\#5\)?
4. Let \(x \text{ Ω } y = (x-y)^2\). If \((k \text{ Ω } 5) \text{ Ω } 2 = 49\), which of the following could be \(k\)?
5. If \( p \text{ & } q = p^2 + q^2 – 2pq \), for what non-negative value of \(q\) is \( p \text{ & } q = p^2 \) for all values of \(p\)?
6. For a three-digit number `abc`, let \(f(abc) = 2^a \times 3^b \times 5^c\). What is the value of \( \frac{f(123)}{f(101)} \)?
7. For a 4-digit number \(abcd\), let \(f(abcd) = 3^a 5^b 7^c 11^d\). If \(m\) and \(n\) are 4-digit numbers and \(f(m) = 3 \times f(n)\), what is \(m-n\)?
8. Let \(x \text{ ♦ } y = x^2 – y^2\). What is the value of \((10 \text{ ♦ } 9) \text{ ♦ } 8\)?
9. Let \(x \text{ Ω } y = (x-y)^2\). If \(x \text{ Ω } (x-y) = 25\), what is \(y^2\)?
10. For any four-digit number \(abcd\), let \(*abcd* = a^b + c^d\). What is \(*1234* + *2143*\)?
Score: 0 / 10