Units Digit – Core Concept

The units digit is the last digit before the decimal point.

Examples:

  • Units digit of 79 is 9
  • Units digit of 76546 is 6

Useful in:

  • Multiplication of large numbers
  • Powers and exponentiation
  • Modulo 10 and 5 operations

Units Digit in Multiplication

To simplify: take only the units digit of each number.

Example:

What is the units digit of
85945 \times 89 \times 58307?

Use only last digits:
5 \times 9 \times 7 = 45 \times 7 = 315 → units digit = 5


Cyclicity of Units Digits

The units digit of powers repeats in cycles. Identify the cycle, divide the exponent by the cycle length, and use the remainder to find the result.

Cyclicity Table

Cycle LengthDigitsExample Powers
10, 1, 5, 6Always same (e.g., 5^n = 5)
24, 94^1 = 4, 4^2 = 6, repeat
42, 3, 7, 8Repeats every 4 (see below)

Example: 7^{345}

Cycle of 7:

     \begin{align*} 7^1 &= 7 \ 7^2 &= 49 \Rightarrow 9 \ 7^3 &= 343 \Rightarrow 3 \ 7^4 &= 2401 \Rightarrow 1 \end{align*}

Cycle: 7, 9, 3, 1
Now,
345 \mod 4 = 1 ⇒ Use first value in cycle → 7


Summary of Exponent Rules

TypeRule
1-cycleUnits digit = base
2-cycleOdd exponent → base, even exponent → base²
4-cycleDivide exponent by 4, use remainder to pick from cycle

Factorials – Trailing Zeros & Prime Powers

Factorials are common in GMAT questions involving:

  • Trailing zeros
  • Power of a prime
  • Divisibility by a composite number

Trailing Zeros in n!

Each trailing zero = factor of 10 = 2 \times 5
Since 2s are plenty, just count 5s:

Formula:

 \left\lfloor \frac{n}{5} \right\rfloor + \left\lfloor \frac{n}{25} \right\rfloor + \left\lfloor \frac{n}{125} \right\rfloor + \cdots

Example: Zeros in 32!

 \left\lfloor \frac{32}{5} \right\rfloor + \left\lfloor \frac{32}{25} \right\rfloor = 6 + 1 = \boxed{7}


Power of a Prime in n!

Formula:

 \sum_{k=1}^{\infty} \left\lfloor \frac{n}{p^k} \right\rfloor

Stop when p^k > n

Example: Power of 2 in 25!

 \left\lfloor \frac{25}{2} \right\rfloor + \left\lfloor \frac{25}{4} \right\rfloor + \left\lfloor \frac{25}{8} \right\rfloor + \left\lfloor \frac{25}{16} \right\rfloor = 12 + 6 + 3 + 1 = \boxed{22}


Power of Non-Prime in n!

Steps:

  1. Prime factorize the number
  2. Find power of each prime in n!
  3. Divide each result by exponent in factorization
  4. Take the minimum

Example: Power of 900 in 50!

Factor: 900 = 2^2 \times 3^2 \times 5^2

Step 1: Count powers in 50!

PrimeCalculationResult
225 + 12 + 6 + 3 + 147
316 + 5 + 122
510 + 212

Step 2: Divide by exponent in 900

PrimeDivide byFinal Power
2223
3211
526

Final Answer:
900^6 divides 50!


Manual vs Formula Check: 17!

PrimeFormulaTotal
28 + 4 + 2 + 1 = \boxed{15}15
35 + 1 = \boxed{6}6
53 = \boxed{3}3

GMAT Tricks Summary

What You’re FindingFocus On
Trailing ZerosCount 5s only
Number of 15s in n!Count 5s (3s are more frequent)
Number of 10s in n!Count 5s
Number of 8s = 2^3 in n!Count 2s, then divide by 3

Final Takeaway

Use these tools to simplify and speed up:

  • Units digit: Use cyclicity rules and remainder logic
  • Factorials: Use prime count formulas and shortcuts
  • Apply patterns: Recognize them quickly and eliminate wrong choices fast